Low energy nodal solutions to the Yamabe equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nondegeneracy of Nonradial Nodal Solutions to Yamabe Problem

We prove the existence of a sequence of nondegenerate, in the sense of Duyckaerts-Kenig-Merle [9], nodal nonradial solutions to the critical Yamabe problem −∆Q = |Q| 2 n−2Q, Q ∈ D1,2(Rn). This is the first example in the literature of nondegeneracy for nodal nonradial solutions of nonlinear elliptic equations and it is also the only nontrivial example for which the result of Duyckaerts-Kenig-Me...

متن کامل

Blow-up Solutions for Linear Perturbations of the Yamabe Equation

For a smooth, compact Riemannian manifold (M, g) of dimension N ≥ 3, we are interested in the critical equation ∆gu+ ( N − 2 4(N − 1) Sg +εh ) u = u N+2 N−2 in M , u > 0 in M , where ∆g is the Laplace–Beltrami operator, Sg is the Scalar curvature of (M, g), h ∈ C (M), and ε is a small parameter.

متن کامل

Square-integrability of solutions of the Yamabe equation

We show that solutions of the Yamabe equation on certain ndimensional non-compact Riemannian manifolds which are bounded and Lp for p = 2n/(n−2) are also L2. This Lp-L2-implication provides explicit constants in the surgery-monotonicity formula for the smooth Yamabe invariant in our article [1]. As an application we see that the smooth Yamabe invariant of any 2connected compact 7-dimensional ma...

متن کامل

Compactness of solutions to the Yamabe problem

We establish compactness of solutions to the Yamabe problem on any smooth compact connected Riemannian manifold (not conformally diffeomorphic to standard spheres) of dimension n 7 as well as on any manifold of dimension n 8 under some additional hypothesis. To cite this article: Y.Y. Li, L. Zhang, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  2004 Académie des sciences. Published by Elsevier SA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2020

ISSN: 0022-0396

DOI: 10.1016/j.jde.2019.11.043